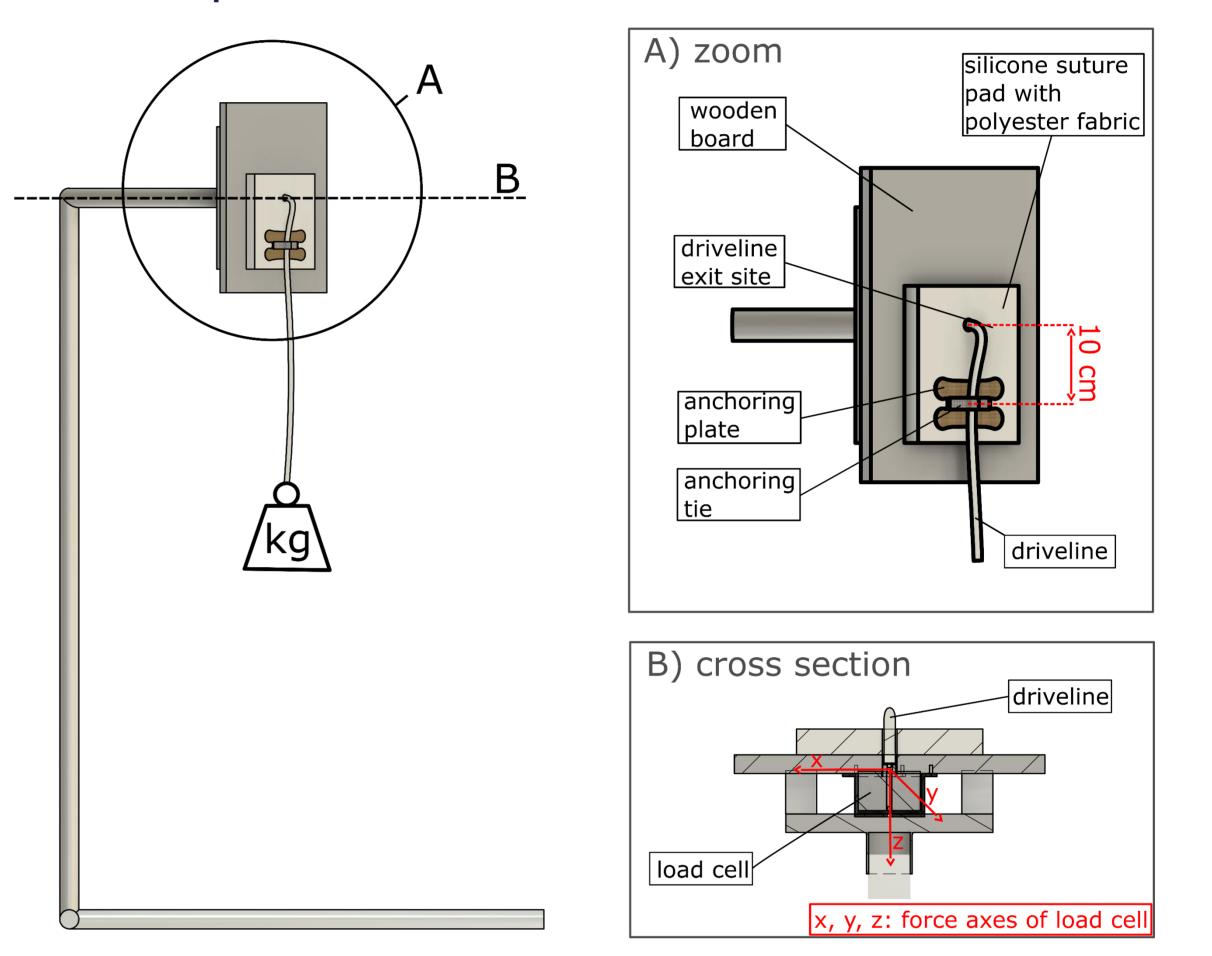


Mechanical Characterization of Anchoring Devices for Preventing Trauma and Driveline Infection in Patients with Left Ventricular Assist Device

J. Schachl¹, M. Stoiber^{2, 3}, M. Socha¹, D.Wiedemann¹, D. Zimpfer¹, H. Schima^{1, 2, 3}, T. Schlöglhofer^{1, 2, 3}

Department of Cardiac Surgery, Medical University of Vienna, Austria, ² Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria, ³ Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria

Objective

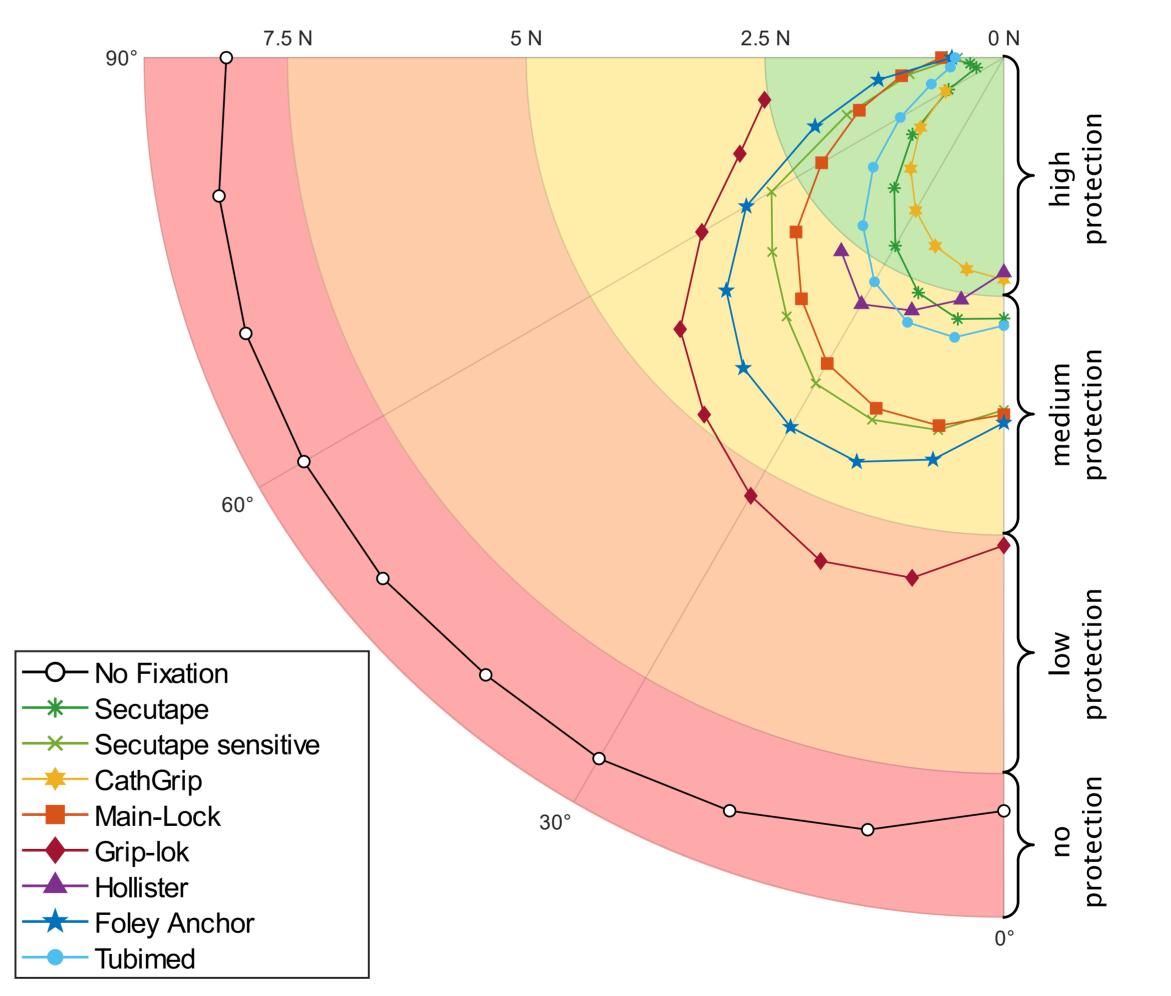

Driveline infection (DLI) is one of the most common adverse events associated with left ventricular assist device (LVAD)

therapy [1], leading to increased patient mortality and morbidity [2]. To avoid trauma to the driveline exit-site (DLES) as major risk factor for DLI [3], the use of adhesive anchoring devices for driveline (DL) immobilization is recommended [4, 5]. However, as there is no evidence of superiority for a specific device, this study aims to mechanically characterize the effectiveness of different adhesive anchoring devices used in clinical practice.

Methods

Commonly used anchoring devices were identified through a literature review and by contacting nine international VAD implanting centers. For mechanical characterization of the anchoring devices, an in-vitro model of abdomen and DLES of the patient was constructed (Fig. 1), in which a tensile force (10N) could be applied from an adjustable angle (0-90°) to a HeartMate 3 LVAD DL and the resulting force (F_{Total}) on the artificial DLES recorded using a three-axis load cell. F_{Total} was classified into four trauma protection categories (high: 0-25%, medium: 25-50%, low: 50-75%, no protection: 75-100%) of the applied tensile force.

Results



In total, eigth different anchoring devices (Fig. 3-10). were identified and tested (Fig. 2), with Hollister and Foley Anchor being the most commonly used clinically. The CathGrip anchoring device provided 100% 'high protection' ($F_{Total}=2.1\pm0.4N$), Secutape ($F_{Total}=2.6\pm0.3N$) and Tubimed (F_{Total}=2.9±0.2N) 60-70% 'high protection', and Hollister (F_{Total} =2.7±0.5N) 80% 'medium protection'. All four devices were significantly (p<0.05) better at preventing tensile forces at the DLES compared to the other four devices (Main-Lock: $F_{Total}=3.7(0.7)N$, Secutape sensitive: F_{Total}=3.9±0.4N, Foley Anchor: F_{Total} =4.3±0.5N, Grip-Lok: F_{Total} =5.4±0.8N-worst with 55% 'low protection'). Not using an anchoring device resulted in F_{Total} =8.2±0.3N (100% 'no protection').

Conclusion

The appropriate selection of anchoring devices plays a critical role in reducing the risk of DLI, with CathGrip, Secutape, Hollister, or Tubimed being superior in preventing trauma to the DLES and subsequent DLI.

Figure 1: Measurement Setup: A) zoom of abdomen model, B) cross section of abdomen model with load cell axis

Figure 2: Mean tensile force to the DLES, 90° polar plot, stratified by seven types of anchoring device types and no fixation

Secutape	Secutape Sensitive	CathGrip	Main-Lock	Grip-Lok	Hollister	Foley Anchor	Tubimed
Figure 3: SECUTAPE Velcro binder set big nonwoven, TechniMed AG, Rorschach, Switzerland References	Figure 4: Secutape sensitive: SECUTAPE® fixing set for big lumina hydrocolloid, TechniMed AG, Rorschach, Switzerland	Figure 5: Securement CathGrip® large double strap, BioDerm, Inc., Largo, FL, USA	Figure 6: Main-Lock 14, Novo Klinik-Service GmbH, Bergheim, Germany	Figure 7: Grip-Lok: GRIP- LOK (PICC and CVC Securement Device) medium, TIDI Products, LLC, Neenah, WI USA	Figure 8: Horizontal Tube Attachment Device, Hollister Incorporated, Libertyville, IL USA	Figure 9: Foley Anchor, UrineCatheter/ Drainage Line/Driveline Securement, CENTURION medical products corp., Williamstone, MI, USA	Figure 10: Drainagen Fixierung Gr. 3, Tubimed GmbH, Memmingen, Germany

NULLIUUS

[1] Molina EJ, Shah P, Kiernan MS, et al.: The Society of Thoracic Surgeons Intermacs 2020 Annual Report The Annals of Thoracic Surgery 111: 778–792, 2021 [2] O'Horo JC, Abu Saleh OM, Stulak JM, Wilhelm MP, Baddour LM, Rizwan Sohail M: Left Ventricular Assist Device Infections: A Systematic Review ASAIO Journal 64: 287-294, 2018 [3] Zierer A, Melby SJ, Voeller RK, et al.: Late-Onset Driveline Infections: The Achilles' Heel of Prolonged Left Ventricular Assist Device Support The Annals of Thoracic Surgery 84: 515-520, 2007 [4] Kusne S, Mooney M, Danziger-Isakov L, et al.: An ISHLT consensus document for prevention and management strategies for mechanical circulatory support infection The Journal of Heart and Lung Transplantation 36: 1137-1153, 2017 [5] Saeed D, Feldman D, Banayosy AE, et al.: The 2023 International Society for Heart and Lung Transplantation Guidelines for Mechanical Circulatory Support: A 10- Year Update The Journal of Heart and Lung Transplantation: S1053249822022483, 2023